FOUR LAMBDA STORIES , AN INTRODUCTION TO COMPLETELY INTEGRABLE SYSTEMS by Frédéric
نویسندگان
چکیده
— Among all non-linear differential equations arising in Physics or in geometry, completely integrable systems are exceptional cases, at the concurrence of miraculous symmetry properties. This text proposes an introduction to this subject, through a list of examples (the sinh-Gordon, Toda, Korteweg-de Vries equations, the harmonic maps, the anti-self-dual connections on the four-dimensional space). The leading thread is the parameter lambda, which governs the algebraic structure of each of these systems. Résumé (Quatre histoires de lambda, une introduction aux systèmes complètement intégrables) Parmi toutes les équations différentielles non linéaires venant de la physique ou de la géométrie, les systèmes complètement intégrables sont des cas exceptionnels, où se conjuguent des propriétés de symétries miraculeuses. Ce texte propose une introduction à ce sujet, à travers une liste d’exemples (les équations de sh-Gordon, de Toda, de Korteweg-de Vries, les applications harmoniques, les connexions anti-autoduales sur l’espace de dimension quatre). Le fil conducteur est le paramètre lambda, qui gouverne la structure algébrique de chacun de ces systèmes.
منابع مشابه
SINGULAR LAGRANGIAN MANIFOLDS and SEMI-CLASSICAL ANALYSIS
Lagrangian submanifolds of symplectic manifolds are very central objects in classical mechanics and microlocal analysis. These manifolds are frequently singular (integrable systems, bifurcations, reduction). There has been a lot of works on singular Lagrangian manifolds initiated by Arnold, Givental and others. The goal of our paper is to extend the classical and semi-classical normal forms of ...
متن کاملCompletely Integrable Bi-hamiltonian Systems
We study the geometry of completely integrable bi-Hamiltonian systems, and in particular, the existence of a bi-Hamiltonian structure for a completely integrable Hamiltonian system. We show that under some natural hypothesis, such a structure exists in a neighborhood of an invariant torus if, and only if, the graph of the Hamiltonian function is a hypersurface of translation, relative to the af...
متن کاملar X iv : m at h / 99 07 16 9 v 1 [ m at h . Q A ] 2 6 Ju l 1 99 9 Integrable deformations of Hamiltonian systems and q - symmetries 1
The complete integrability of the hyperbolic Gaudin Hamiltonian and other related integrable systems is shown to be easily derived by taking into account their sl(2, R) coalgebra symmetry. By using the properties induced by such a coalgebra structure, it can be proven that the introduction of any quantum deformation of the sl(2, R) algebra will provide an integrable deformation for such systems...
متن کاملON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
متن کاملConstruction of strict Lyapunov function for nonlinear parameterised perturbed systems
In this paper, global uniform exponential stability of perturbed dynamical systems is studied by using Lyapunov techniques. The system presents a perturbation term which is bounded by an integrable function with the assumption that the nominal system is globally uniformly exponentially stable. Some examples in dimensional two are given to illustrate the applicability of the main results.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007